A decision support system methodology for forecasting of time series based on soft computing
نویسندگان
چکیده
Exponential procedures are widely used as forecasting techniques for inventory control and business planning. A number of modifications to the generalized exponential smoothing (Holt–Winters) approach to forecasting univariate time series is presented, which have been adapted into a tool for decision support systems. This methodology unifies the phases of estimation and model selection into just one optimization framework which permits the identification of robust solutions. This procedure may provide forecasts from different versions of exponential smoothing by fitting the updated formulas of Holt–Winters and selects the best method using a fuzzy multicriteria approach. The elements of the set of local minima of the non-linear programming problems allow us to build the membership functions of the conflicting objectives. It is compared to other forecasting methods on the 111 series from the M-competition. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Rainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملA Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer
Soft Computing techniques play an important role for decision in applications with imprecise and uncertain knowledge. The application of soft computing disciplines is rapidly emerging for the diagnosis and prognosis in medical applications. Between various soft computing techniques, fuzzy expert system takes advantage of fuzzy set theory to provide computing with uncertain words. In a fuzzy exp...
متن کاملA Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)
Estimating the costs of software development is one of the most important activities in software project management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects will result in failure on delivery on time and indicates the inefficiency of the software development team. On the other hand, high estimates of resources and costs for a project wil...
متن کاملPothole Detection by Soft Computing
Subject- Potholes on roads are regarded as serious problems in the transportation domain and ignoring them leads to the increase of accidents, traffic, vehicle fuel consumption and waste of time and energy. As a result, pothole detection has attracted researchers’ attention and different methods have been presented for it up to now. Background- The major part of previous research is based on i...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2006